Introduction to Semantics

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

▲□▶▲□▶▲□▶▲□▶ □ のへで

Objectives	Judgments	Proof Trees	References
•	000000	00	0

Objectives

- Define *judgment* and explain its purpose in programming languages.
- Use *proof rules* to define judgments inductively.
- Use *proof trees* to prove properties about complex syntactic objects.

This presentation draws from Robert Harper's first chapters in [Har12].

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Objectives	Judgments	Proof Trees	References
0	●00000	00	0

- A *judgment* is an assertion about a syntactic object.
- ► Examples:

Objectives	Judgments	Proof Trees	References
0	00000	00	0

▲□▶▲□▶▲□▶▲□▶ □ のへで

- A *judgment* is an assertion about a syntactic object.
- Examples:
 - 3 is odd

Objectives	Judgments	Proof Trees	References
0	00000	00	0

▲□▶▲□▶▲□▶▲□▶ ■ のへで

- A *judgment* is an assertion about a syntactic object.
- Examples:
 - 3 is odd
 - ▶ $2+3 \Downarrow 5$

Objectives	Judgments	Proof Trees	References
0	00000	00	0

▲□▶▲□▶▲□▶▲□▶ ■ のへで

- A *judgment* is an assertion about a syntactic object.
- Examples:
 - 3 is odd
 - ▶ $2+3 \Downarrow 5$
 - $\blacktriangleright ~\vdash 2.4 > 3.5: \texttt{Bool}$

Objectives	Judgments	Proof Trees	References
0	00000	00	0

The Parts of a Rule

- We can also define judgments inductively.
- Let $J, J_1, J_2, \ldots J_n$ be a set of judgments.
- ► Then we can have a *rule* as follows:

$$\frac{J_1 \qquad J_2 \qquad \cdots \qquad J_n}{J} \text{ Label}$$

Objectives	Judgments	Proof Trees	References
0	00000	00	0

The Parts of a Rule

- We can also define judgments inductively.
- Let $J, J_1, J_2, \ldots J_n$ be a set of judgments.
- Then we can have a *rule* as follows:

$$\frac{J_1 \quad J_2 \quad \cdots \quad J_n}{J} \text{ Label}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

- The $J_1 \ldots J_n$ are called assumptions or premises.
- ► J is called a conclusion.

Objectives	Judgments	Proof Trees	References
0	00000	00	0

Axioms

- It's possible for there to be no assumptions!
- Such a rule is called an *axiom*.

- Label

<□> <0<>

Objectives	Judgments	Proof Trees	References
0	000000	00	0

Side Conditions

• If a premise is not a judgment, we sometimes write it as a *side condition*.

$$\overline{x \text{ is even}}$$
 MODO, $x \mod 2 = 0$

0 000000 00 00	Objectives	Judgments	Proof Trees	References
	0	000000		0

Example: Even and Odd Numbers with Addition

$$x ext{ is even}$$
 $MODO, x ext{ mod } 2 = 0$ $\overline{x ext{ is odd}}$ $MOD1, x ext{ mod } 2 = 1$ $x ext{ is even}$ $y ext{ is even}$ $x ext{ is odd}$ $y ext{ is odd}$ $ODD+ODD$ $\frac{x ext{ is even}}{x + y ext{ is odd}}$ $EVEN+EVEN$ $\frac{x ext{ is odd}}{x + y ext{ is even}}$ $ODD+ODD$ $\frac{x ext{ is odd}}{x + y ext{ is odd}}$ $EVEN+ODD$ $\frac{x ext{ is odd}}{x + y ext{ is odd}}$ $ODD+EVEN$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Objectives	Judgments	Proof Trees	References
0	00000	00	0

Example: Even and Odd Numbers with Multiplication

$$\frac{x \text{ is even } y \text{ is even}}{x \times y \text{ is even}} EVEN \times EVEN$$

$$\frac{x \text{ is odd}}{x \times y \text{ is odd}} \text{ ODD} \times \text{ODD}$$

$$\frac{x \text{ is even } y \text{ is odd}}{x \times y \text{ is even}} \text{ EVEN} \times \text{ODD}$$

$$\frac{x \text{ is odd } y \text{ is even}}{x \times y \text{ is even}} \text{ Odd} \times \text{Even}$$

Objectives	Judgments	Proof Trees	References
0	000000	•0	0

Building Proof Trees

• We can use these rules to prove judgments about objects inductively.

There are two ways you can use proof trees.

- Prove a property you already know.
- Infer a property you don't already know.

Objectives	Judgments	Proof Trees	References
0	000000	0●	0

How to use it:

Start with the judgment you want to prove.

$4+7 \ \mathrm{is} \ \mathrm{odd}$

0 000000	00	0

How to use it:

- Start with the judgment you want to prove.
- Decide which rule applies.

 $4+7 \operatorname{is} \operatorname{odd}$ Even+Odd

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

	Keferences
o 000000 0 ●	0

How to use it:

- Start with the judgment you want to prove.
- Decide which rule applies.
- Recursively prove first subexpression.

$$\frac{-4 \text{ is even}}{4 + 7 \text{ is odd}} \text{ Mod } 2 = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Objectives Judgr	ments	Proof Trees F	References
0 000	0000	0•	0

How to use it:

- Start with the judgment you want to prove.
- Decide which rule applies.
- Recursively prove first subexpression.
- Recursively prove second subexpression.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Objectives	Judgments	Proof Trees	References
0	000000	00	•

References

[Har12] Robert Harper. Practical Foundations for Programming Languages. 2012, p. 496. DOI: 10.1017/CB09781139342131.

