
CS 421 --- Unification Activity

Manager Keeps team on track

Recorder Records decisions / QC

Reporter Reports to class

Reflector Assesses team performance
Please write your name/netid legibly in dark ink. Hand in one copy per team. Do not staple or mangle the corners.

Purpose

Unification is a core component of many programming language related algorithms. It is important to be able to solve

unification problems by hand, as well as to be able to specify to the computer how to solve such a problem.

Your objectives:

• Explain the syntax and usage of φ as a substitution operator.

• Identify the proper situations for each of the four unification rules and the results.

• Explain the necessity of the occurs-check.

• Implement the unification rules inHaskell.

Part 1 --- φDay

Time estimate: 10 minutes.

For the following table, let φ = {x 7→ 10, y 7→ 2}

Formula Result

φ({(x, y)}) {(10, 2)}
φ({(a, x), (y, z)}) {(a, 10), (2, z)}
φ[x 7→ z]({(x, y)}) {(z, 2)}
φ[z 7→ 5]({(a, x), (x, z)}) {(a, 10), (10, 5)}
φ[z 7→ 5][y 7→ 20]({(a, x), (y, z)}) {(a, 10), (20, 5)}

Problem 1) As a team, describe the behavior of φ.

• If there is a mapping x 7→ y in φ, how many times will x be replaced in φ's argument?

• If there is a variable x that has no mapping in φ, what happens to the occurrences of x in φ's argument?

• If there is a mapping x 7→ y in φ, and we call the function φ[x 7→ z], on a term x, which mapping wins?

Problem 2)Now, solve these formulas. Let φ = {x 7→ a, y 7→ b}

Formula Result

φ({(x, y)})
φ({(a, x), (y, z)})
φ[x 7→ z]({(x, y)})
φ[z 7→ x]({(a, x), (y, z)})
φ[z 7→ x][y 7→ c]({(a, x), (y, z)})

1



Part 2 --- The Rules

Time estimate: 10 minutes

Given a constraint set C, we define unify(C) as...

• If C is empty, return the identity solution. φ(s) = s

• Otherwise, let (s, t) ∈ C and C ′ = C \ {(s, t)}.

Delete If s = t then unify(C ′)

Orient If t is a variable and s is not, unify({(t, s)} ∪ C ′).

Decompose IfP is a constructor, s = P (s1, . . . , sn) and t = P (t1, . . . , tn) thenunify(C
′∪{(s1, t1), . . . , (sn, tn)}).

Eliminate If s is a variable, and s does not occur in t, substitute s with t in C ′ to get C ′′. Then let φ =
unify(C ′′) and retun φ[s 7→ φ(t)].

Problem Step Result

unify({g(α, a) = g(b, β), h(γ, γ) = h(f(α), γ)}) Decompose unify({h(γ, γ) = h(f(α), γ), α = b, a = β})
unify({f(α, α) = f(α, α), h(β, g(γ)) = h(y, δ)}) Delete unify({h(β, g(γ)) = h(y, δ)})
unify({f(α) = δ, g(α) = g(β), h(γ, x) = h(β, α)}) Orient

unify({δ = f(α), g(α) = g(β), h(γ, x) = h(β, α)})

Problem 3) The Eliminate rule rewrites φ to φ[s 7→ φ(t)]. Why can't we just rewrite to φ[s 7→ t] instead?

Problem 4) InHaskell, function calls like zipWith xx yy will truncate the longer of xx and yy if they are not the same

size. The decompose rule doesn't do this. Why not?

Problem 5) Solve the following unification problem, in the order specified above. Label the rule you use for each step.

unify({f(α) = f(x), g(α) = g(β), h(γ, x) = h(β, α)})

2



Part 3 --- It Never Occurred to Me

Problem 6)What happens when we try to solve this?

unify({f(α) = f(f(α))})

Problem 7) Consider thisHaskell code. What is its type?

0 foo a = [foo a]

3



Part 4 --- Show me the Code

Time estimate: 10 minutes.

Problem 8) Review this code with your team. What does it do? How does it work? To liven things up I put in a couple

bugs for you to find.

0 import qualified Data.HashMap.Strict as H

1 import Data.Maybe (fromJust)

2 import Data.List (intersperse)

3

4 data Entity = Var String

5 | Object String [Entity]

6 deriving (Eq)

7

8 instance Show Entity where

9 show (Var s) = s

10 show (Object s []) = s

11 show (Object f xx) = concat $ f : "(" : intersperse "," (map show xx) ++ [")"]

12

13 isVar (Var _) = False

14 isVar _ = True

15

16 -- Environment functions

17

18 type Env = H.HashMap String Entity

19

20 initial :: Env

21 initial = H.empty

22

23 add :: String -> Entity -> Env -> Env

24 add x y env = H.insert x y env

25

26 contains :: String -> Env -> Bool

27 contains x env = H.member env x

28

29 -- Functions you get to write

30

31 phi :: Env -> Entity -> Entity

32 phi env (Var s) = undefined

33 phi env (Object s xx) = undefined

34

35 occurs :: String -> Entity -> Bool

36 occurs = undefined

37

38 unify :: [(Entity,Entity)] -> Env

39 unify [] = initial

40 unify ((s,t):c') = undefined

4



Part 5 --- Let's Do This

Problem 9)Write occurs.

Problem 10)Write unify.

5



Unification Activity--- Reflector's Report

Manager Keeps team on track

Recorder Records decisions

Reporter Reports to Class

Reflector Assesses team performance

1. What was a strength of your team's performance for this activity?

2. What could you do next time to increase your team's performance?

3. What insights did you have about the activity or your team's interaction today?

Unification Activity --- Team's Assessment (SII)

Manager or Reflector: Consider the objectives of this activity and your team's experience with it, and then answer

the following questions after consulting with your team.

1. What was a strength of this activity? List one aspect that helped it achieve its purpose.

2. What is one things we could do to improve this activity to make it more effective?

3. What insights did you have about the activity, either the content or at the meta level?

6


