
CS 421 --- State Monad Activity

Name Netid

Please write your name/netid legibly in dark ink. Hand in one copy per team. Do not staple or mangle the corners.

The State Monad

0 data State s a = State { runState :: s -> (a,s) }

1

2 instance Monad (State s) where

3 return = pure -- or ... return a = State (\s -> (a,s))

4 x >>= f = State (\s -> let (y,s2) = runState x s

5 (z,s3) = runState (f y) s2

6 in (z,s3))

7

8 get :: State s s

9 get = State (\s -> (s,s))

10

11 put :: a -> State a ()

12 put x = State (\s -> ((),x))

13

14 newState a = State (\s -> (a,s))

Problem 1)Notice how when we call pure, we return a State function that does not use its state at all. Why is that the

right thing to do?

Problem 2)What does the syntax runState x smean?

Problem 3)What is the type of the expression (f y)? Why does it have to be that type?

Problem 4)We call runState a second time on (f y). We use s2 in this case. What would happen if we used s instead?

Problem 5) Explain what get and put are doing. Make sure everyone on the team understands them.

1



Using the State Monad

Here are the Functor and Applicative definitions for State, for reference.

0 instance Functor (State s) where

1 fmap f x = State (\s -> let (y,s2) = runState x s

2 in (f y, s2))

3

4 instance Applicative (State s) where

5 pure a = State (\s -> (a,s))

6 ff <*> xx = State (\s -> let (f,s2) = runState ff s

7 (x,s3) = runState xx s2

8 in (f x, s3))

Problem 6) Write a function cplus :: Num a => State s a -> State s a -> State s a that takes two state integers

and adds them, also incrementing the state.

0 Prelude> Main.runState (cplus (newState 10) (newState 20)) 0

1 (30,1)

Problem 7) get and put are boring. Write push :: a -> State [a] () and pop :: State [s] s. You can use get and

put in your definition if you want. Here is a sample function that uses it.

0 addStack x = do

1 a <- x

2 b <- pop

3 push (a + b)

4 return b

5

6 Prelude> Main.runState (addStack (newState 10)) [5,6]

7 (5,[15,6])

2


