CS 421 --- State Monad Activity

Name Netid

Please write your name/netid legibly in dark ink. Hand in one copy per team. Do not staple or mangle the corners.

The State Monad

odata State s a = State { runState :: s -> (a,s) }
1

2 instance Monad (State s) where

3 return = pure -- or ... return a = State (\s -> (a,s))
4 x >>= f = State (\s -> let (y,s2) = runState x s
5 (z,s3) = runState (f y) s2

6 in (z,s3))

sget :: State s s

oget = State (\s -> (s,s))

10

nput :: a -> State a ()

12put x = State (\s -> ((),x))
13

14 newState a = State (\s -> (a,s))

Problem 1) Notice how when we call pure, we return a State function that does not use its state at all. Why is that the
right thing to do?

Problem 2) What does the synfax runState x s mean?

Problem 3) What is the type of the expression (f y)? Why does it have to be that type?

Problem 4) We call runState a second time on (f y). We use s2 in this case. What would happen if we used s instead?

Problem 5) Explain what get and put are doing. Make sure everyone on the team understands them.



Using the State Monad

Here are the Functor and Applicative definitions for State, for reference.

o instance Functor (State s) where

1 fmap f x = State (\s -> let (y,s2) = runState x s

2 in (f y, s2))

3

sinstance Applicative (State s) where

5 pure a = State (\s -> (a,s))

6 ff <*> xx = State (\s -> let (f,s2) runState ff s
7 (x,s3) runState xx s2
8 in (f x, s3))

Problem 6) Write a function cplus :: Num a => State s a -> State s a -> State s a that takes two state integers
and adds them, also incrementing the state.

o Prelude> Main.runState (cplus (newState 10) (newState 20)) 0
1(30,1)

Problem 7) get and put are boring. Write push :: a -> State [a] () and pop :: State [s] s. You can use get and
put in your definition if you want. Here is a sample function that uses it.

oaddStack x = do

1 a <- X

2 b <- pop

3 push (a + b)

4 return b

5

6 Prelude> Main.runState (addStack (newState 10)) [5,6]
7(5,[15,61)



