
CS 421 --- LL Parsing Activity

Manager Keeps team on track

Recorder Records decisions / QC

Reporter Reports to class

Reflector Assesses team performance
Please write your name/netid legibly in dark ink. Hand in one copy per team. Do not staple or mangle the corners.

Purpose

There is a certain class of grammar for which it is very easy to write a parser without needing any special libraries or

tools. Your objectives are to demonstrate how to write such a parser, how to identify a grammar that can use this

approach, and how to fix common problems that prevent a grammar from being implemented as a recursive descent

parser.

Problem 1 --- Recursive Descent Parsers

Consider these two grammars. Lower case letters will represent literal characters in the input. Upper case letters will

represent nonterminal symbols. The character c will represent a random character.

Grammar 1

S → x S y
| E

E → a E b
| c

Grammar 2

S → a S
| E
| F

E → b c
F → d c

Consider now theseHaskell programs. Assume niceties like deriving Show, etc.

0 -- Program 1

1 data S = S1 Char S Char

2 | S2 E

3 data E = E1 Char E Char

4 | E2 Char

5 parseS ('x':xs) =

6 let (s,r1) = parseS xs

7 ('y':r2) = r1

8 in (S1 'x' s 'y', r2)

9 parseS xx = parseE xx

10 parseE ('a':xs) =

11 let (e,r1) = parseE xs

12 ('b':r2) = r1

13 in (E1 'a' e 'b', r2)

14 parseE (x:xs) = (E2 x, xs)

0 -- Program 2

1 data S = S1 Char S

2 | S2 E

3 | S3 F

4 data E = E1 Char Char

5 data F = F1 Char Char

6 parseS ('a':xs) =

7 let (s,r1) = parseS xs

8 in (S1 'a' s, r1)

9 parseS ('b':xs) = parseE ('b':xs)

10 parseS ('d':xs) = parseF ('d':xs)

11 parseE ('b':x:xs) = (E1 'b' x, xs)

12 parseF ('d':x:xs) = (F1 'd' x, xs)

Answer the questions on the next page.

1

Matching Grammar to Code Each of these programs is meant to implement the corresponding grammar. With your

team, review the code and be able to explain to each other how it works. Then answer the following questions:

Problem 1)Why do each of the parse functions return a tuple?

Problem 2) How is parsing a non-terminal different than parsing a terminal?

Problem 3) The second grammar has these two line:

0 parseE ('b':x:xs) = (E1 'b' x, xs)

1 parseF ('d':x:xs) = (F1 'd' x, xs)

From this example, can you explain how the parseS function determines which of parseE or parseF to call?

2

Problem 2 --- What Could Possibly GoWrong?

Grammar 3

S → S y
| x

Grammar 4

S → a S
| a E

E → x

Consider now theseHaskell implementations. We omit the data declarations this time.

0 -- Program 3

1 parseS ('x':xs) = (S2 'x', xs)

2 parseS xx =

3 let (s,r1) = parseS xx

4 ('y':r2) = r1

5 in (S1 s 'y', r2)

0 -- Program 4

1 parseS ('a':xs) =

2 let (s,r1) = parseS xs

3 in (S1 'a' s, r1)

4 parseS ('a':xs) =

5 let (e,r1) = parseE xs

6 in (S1 'a' e, r1)

7 parseE ('x':xs) = (E1 'x', xs)

Problem 4) The first program has a problem. What goes wrong? What feature of the grammar causes this problem to

occur?

Problem 5) The second program also has a problem. What goes wrong? What feature of the grammar causes this

problem to occur?

3

Problem 3 --- Fixing Left Recursion

Problem 6) Consider these two grammars:

Grammar 5

S → S a
| b

Grammar 6

S → b S ′

S ′ → a S ′

| ε
Draw two parse trees for the string baaa, one for each of the above grammars.

Problem 7) Consider these two grammars:

Grammar 7

S → S a
| S b
| c
| d e

Grammar 8

S → c S ′

| de S ′

S ′ → a S ′

| b S ′

| ε
Draw two parse trees for the string deba, one for each of the above grammars.

Problem 8) Describe a conversion procedure to fix a left-recursive grammar.

Given a grammar:
S → S α

| β
Show what the corresponding converted grammar looks like. The α and β here mean ``any arbitrary sequence of

terminals and nonterminals.''

4

Problem 4 --- Fixing Common Prefixes

Problem 9) Consider these two grammars:

Grammar 9

S → a b
| a E

E → x y

Grammar 10

S → a S ′

S ′ → b
| E

E → x y
Draw two parse trees for the string axy, one for each of the above grammars.

Problem 10) Consider these two grammars:

Grammar 11

S → a b
| E

E → x y
| a z

Grammar 12

S → a S ′

| x y
S ′ → b

| z
Draw two parse trees for the string az, one for each of the above grammars. The second grammar is missing theE

production entirely. Why is this necessary?

Problem 11) Describe a conversion procedure to fix a common-prefix rule in a grammar. Given this stylized grammar,

S → α β
| α γ
| δ

show what the corresponding converted grammar looks like.

5

Problem 5 --- Apply It!

Problem 12) This grammar is not LL. Convert it to an equivalent grammar that is LL.

Grammar 13

S → S x
| a E

E → y a y
| y a z

Problem 13) There is a third thing that can go wrong! Look at this grammar and describe what goes wrong. Note, it's

not just that there is an ε production.
Grammar 14

A → B c
| x

B → c
| ε

Problem 14)Were all these too easy? Try converting this one then.

Grammar 15

A → A x |B y | z
B → A i |B j | k

6

LL Parsing Activity--- Reflector's Report

Manager Keeps team on track

Recorder Records decisions

Reporter Reports to Class

Reflector Assesses team performance

1. What was a strength of your team's performance for this activity?

2. What could you do next time to increase your team's performance?

3. What insights did you have about the activity or your team's interaction today?

LL Parsing Activity --- Team's Assessment (SII)

Manager or Reflector: Consider the objectives of this activity and your team's experience with it, and then answer

the following questions after consulting with your team.

1. What was a strength of this activity? List one aspect that helped it achieve its purpose.

2. What is one things we could do to improve this activity to make it more effective?

3. What insights did you have about the activity, either the content or at the meta level?

7

