CS 421 --- Higher Order Functions Activity

Manager | Keeps team on track
Recorder | Records decisions / QC
Reporter | Reports to class

Reflector | Assesses team performance

Learning Objectives

Mapping, folding, and zipping allow us to abstract away common list computations. Knowing how to use them will
make you more productive as a programmer.

1. Reduce code size by using map, foldr, and zipWith.

2. Use type signatures to implement curry, uncurry, and flip.

Mapping (5 minutes)
Consider the following code and sample run, stolen from Haskell Programming From First Principles, Chapter 9.

oPrelude> map (+1) [1, 2, 3, 4]

1[02,3,4,5]

2 Prelude> map (1-) [1, 2, 3, 4]

3[0,-1,-2,-3]

1Prelude> map (take 2) [[1, 4, 91, [2, 3, 51, [11, 12, 131]
s[[1,41,02,31,[11,121]

6 Prelude> zipWith (+) [1, 2, 31 [10, 11, 12]

7[11,13,15]

s Prelude> zipWith max [10, 5, 34, 9] [6, 8, 12, 7]

0 [10,8,34,9]

Problem 1) What does the (+1) code mean?

Problem 2) In the second example, why are we using (1-) and not (-1)?

Problem 3) How would you describe the difference between map and zipWith?



Reducing

Haskell has some functions foldr and foldl that behave like the reduce function found in other languages such as
Python and JavaScript. Perhaps you have used it!
Consider the following sample run.

o Prelude> :set +m

1Prelude> { showPair x "" = x
2Prelude| ; showPair x y = "(" ++ x ++ " " ++ y ++ ")"
3Prelude| }

4 Prelude> showPair "10" ""

5"10"

6 Prelude> showPair "10" "20"

7"(10,20)"

Problem 4) What do you think the :set +m, curly braces, and semicolons are about? What happens if we don't use
them?

Problem 5) What does showPair do?

Now consider this run:

o Prelude> sumList1 xx = foldr (+) 0 xx

1 Prelude> sumList1 [3,4,5,6]

218

3 Prelude> sumList2 xx = foldl (+) 0 xx
4Prelude> sumList2 [3,4,5,6]

518

6 Prelude> pairList1l xx = foldr showPair "" xx

7Prelude> pairList2 xx = foldl showPair "" xx
8 Prelude> pairList-I |:||3|| , ||4|| , ||5|| , ||6||:|

0"(3,(4,(5,6)))"
10 Prelude> pairList2 ["3","4","5","6"]

11 "((((,3),4),5),6)"
Problem 6) s there an observable difference between sumList1 and sumList2?
Problem 7) |s there an observable difference between pairList1 and pairList2?

Problem 8) Write a function prodList using the same technique you see here.

Problem 9) Do you think either foldr or foldl is tail recursive? Why or why not?



List Comprehensions
List comprehensions are similar fo higher order functions, and can allow you to write very compact code.

oPrelude> [x+1 | x <= [1..10]]
102,3,4,5,6,7,8,9,10,11]

2 Prelude> [x+1 | x <= [1..10], x>5]
3[7,8,9,10,11]

4 Prelude> stuff = [8,6,7,5,3,0,9]

s Prelude> [ x+1 | x <- stuff ]
6[9,7,8,6,4,1,10]

7Prelude> [ x+1 | x <- stuff, x > 5]
s[9,7,8,10]

oPrelude> [ x+1 | x <- stuff, x > 5, even x]
10[9,7]

11Prelude> [ x +y | x <= stuff, y <- [10,20]]
12[18,28,16,26,17,27,15,25,13,23,10,20,19,29]

Problem 10) What is the purpose of the x <- stuff expression?

Problem 11) What is the purpose of x > 5, and even x?

Problem 12) How do you describe the order in which x and y are created in the last example?

Problem 13) What does the following code do?

oguess [1 =[]
1guess (x:xs) = guess [y | y <= xs, y < x]
2 ++ [x] ++

3 guess [y | y <= xs, y >= x]



Currying
Consider these two functions:

o Prelude> uplus (a,b) = a + b
1Prelude> cplus a b =a + b

Problem 14) What is the difference between cplus and uplus? What would it look like to use them?

The function cplus, which is written in idiomatic Haskell, is said to be curried. This makes it taste better.
Problem 15) Write a function curry :: ((a,b) -> ¢) -> a -> b -> c that takes a non-curried function and returns an
equivalent curried version.

o Prelude> plus (a,b) = a + b
1 Prelude> :t plus

2Num a => (a,a) -> a

s Prelude> cplus = curry plus
4 Prelude> cplus 10 20

5 30

Problem 16) Write a function flip :: (a -=> b -> ¢) -> (b -> a -> c) that takes a function that takes two arguments
and returns an equivalent function where the arguments have been reversed.

oPrelude> sub a b=a -b
1 Prelude> flip sub 10 2
2-8

Problem 17) Consider the types of f1ip and curry. Can you write another function that has either of those types? Why
or why not?



Higher Order Functions Activity--- Reflector's Report

Manager | Keeps team on track
Recorder | Records decisions

Reporter | Reports to Class

Reflector | Assesses team performance

1. What was a strength of your team's performance for this activity?

2. What could you do next time to increase your team's performance?

3. What insights did you have about the activity or your team's interaction today?

Higher Order Functions Activity --- Team's Assessment (SII)

Manager or Reflector: Consider the objectives of this activity and your team's experience with it, and then answer
the following questions after consulting with your team.

1. What was a strength of this activity? List one aspect that helped it achieve its purpose.

2. What is one things we could do to improve this activity to make it more effective?

3. What insights did you have about the activity, either the content or at the meta level?



