
CS 421— First and Follow Sets

Objectives

The purpose of this handout is to give a formal definition of the first and follow set algorithms, as well as a Haskell
implementation. The implementation is described throughout the text as parts of it come up, and the whole of the
code is given at the end. You are likely to have better results if you type in the code yourself, rather than downloading
it from somewhere or cutting and pasting.

Introduction

As you saw before, a grammarG is a tuple (N, T, P ), whereN is a set of non-terminal symbols, T is a set of terminal
symbols, and P is a set of productions mapping each non-terminal symbol to one or more lists of symbols, possibly
including the empty string, which we reperesent with ε.

Headers

We need the following imports and language directives.

{-# LANGUAGE DeriveGeneric #-}

import qualified Data.HashMap.Strict as H
import qualified Data.HashSet as S

import GHC.Generics (Generic)
import Data.Hashable

We are using the efficient hash map and hash set implementation, and to allow the hash function to work on
our types, we need the generics and hashable modules.

If you are using stack, you need to add hashable and unordered-containers to the cabal file under the
executable heading. For example, if the project is called grmsets, you will have a block like this one:

executable grmsets-exe
hs-source-dirs: app
main-is: Main.hs
ghc-options: -threaded -rtsopts -with-rtsopts=-N
build-depends: base

, grmsets
, hashable
, unordered-containers

default-language: Haskell2010

The build-depends block is the important one, the other options may be different.

1



Representations

We use a symbol type with three constructors to represent the three kinds of symbols: terminals, non-terminals,
and epsions. We also tell the compiler that we intend to hash this type.

data Symbol = Term String
| NTerm String
| Eps

deriving (Show,Eq,Generic)

instance Hashable Symbol

A production takes a non-terminal to a list of symbols. A non-terminal can have more than one production.

data Prod = Prod Symbol [Symbol]
deriving (Show,Eq)

We use a hash map to represent our sets. Each non-terminal has its own first and follow set.

data Prod = Prod Symbol [Symbol]
deriving (Show,Eq)

type GSet = H.HashMap Symbol (S.HashSet Symbol)

The representation of this grammar

S → A x
| B y
| z

A→ 1 C B
| 2 B

B → 3 B
| C

C → 4
| ε

will be this:

gr = [Prod (NTerm "S") [NTerm "A", Term "x"]
,Prod (NTerm "S") [NTerm "B", Term "y"]
,Prod (NTerm "S") [Term "z"]
,Prod (NTerm "A") [Term "1", NTerm "C", NTerm "B"]
,Prod (NTerm "A") [Term "2", NTerm "B"]
,Prod (NTerm "B") [Term "3", NTerm "B"]
,Prod (NTerm "B") [NTerm "C"]
,Prod (NTerm "C") [Term "4"]
,Prod (NTerm "C") [Eps]
]

We will frequently want to update entries into our hash table, so we have this utility function to allow that. It
takes a function for modifying the entry, a default value in case the entry is not present, a lookup key, and the hash
table. It returns a new hash table.

2



updateDefault :: (Eq k, Hashable k) => (v -> v) -> v -> k
-> H.HashMap k v -> H.HashMap k v

updateDefault f d k m =
case H.lookup k m of

Nothing -> H.insert k (f d) m
Just v2 -> H.insert k (f v2) m

You can simplify this code a bit by using lookupDefault.
Here is an example of how it works:

Main> updateDefault (+1) 0 "x" H.empty
fromList [("x",1)]
Main> updateDefault (+1) 0 "x" $ H.insert "x" 10 H.empty
fromList [("x",11)]

First Sets

Let α be an arbitrary (possibly empty) string of symbols. The first set of a string of symbols α is the set of terminal
symbols that could appear in the initial position of a valid parse of α.

For example, if we have a grammar
S → x
| y z

Then we have first(z) = {z}, first(S) = {x, y}, and first(z S) = {z}.
To define a first set, let α be an aribrary string of symbols,N be a non-terminal symbol whose first set does not

contain ε,N ′ be a non-terminal symbol whose first set contains ε, and x be a terminal symbol.
Then the first set of a string of symbols is defined as:

first(x α) = {x}
first(N α) = first(N)
first(N ′ α) = (first(N ′)− ε) ∪ first(α)
first(ε) = {ε}

In Haskell, we define this as

first :: [Symbol] -> GSet -> S.HashSet Symbol
first [] fset = S.singleton Eps
first (Term t : _) fset = S.singleton (Term t)
first (Eps : syms) fset = first syms fset
first (NTerm t : syms) fset =

let fs_t = H.lookupDefault S.empty (NTerm t) fset
in if S.member Eps fs_t

then S.union (S.delete Eps fs_t) (first syms fset)
else fs_t

To calculate the first set of a grammar we iterate over the productions N → α and update our definitions
first(N)← first(N) ∪ first(α).

To represent the update of an individual production, we have updateFirst:

updateFirst :: GSet -> Prod -> GSet
updateFirst fset (Prod nt syms) fset =

updateDefault (S.union (first syms fset)) S.empty nt fset

3



Given our grammar gr above, the first round of updating would yield

first(S) = {z}
first(A) = {1, 2}
first(B) = {3}
first(C) = {4, ε}

Because the non-terminals do not have anything in their first set definitions yet, we only see the terminal sym-
bols that come at the beginning of a production.

Here is our function propagateFirst, which takes a grammar and a first set and updates the first set.

propagateFirst :: [Prod] -> GSet -> GSet
propagateFirst grm fset = Prelude.foldl updateFirst fset grm

Running it once on an empty hashmap gives us the result we got above.

Main> propagateFirst gr H.empty
fromList [(NTerm "A",fromList [Term "2",Term "1"]),

(NTerm "C",fromList [Term "4",Eps]),
(NTerm "S",fromList [Term "z"]),
(NTerm "B",fromList [Term "3"])]

If we run this another round, theB and S symbols get updated.

Main> propagateFirst gr it
fromList [(NTerm "A",fromList [Term "2",Term "1"]),

(NTerm "C",fromList [Term "4",Eps]),
(NTerm "S",fromList [Term "z",Term "3",Term "2",Term "1"]),
(NTerm "B",fromList [Term "4",Term "3",Eps])]

The third timewe propagateFirstwe reach a steady state. Further runs of this codewill not change anything.

Main> propagateFirst gr it
fromList [(NTerm "A",fromList [Term "2",Term "1"]),

(NTerm "C",fromList [Term "4",Eps]),
(NTerm "S",fromList [Term "4",Term "z",Term "3",Term "y",Term "2",Term "1"]),
(NTerm "B",fromList [Term "4",Term "3",Eps])]

SincepropagateFirst always reaches a steady state, we candefine our first set as the fix-point ofpropagateFirst.

fix f x = if x == result
then x

else fix f result
where result = f x

firstSet grm = fix (propagateFirst grm) H.empty

Now we can calculate our first sets!

Main> firstSet gr
fromList [(NTerm "A",fromList [Term "2",Term "1"]),

(NTerm "C",fromList [Term "4",Eps]),
(NTerm "S",fromList [Term "4",Term "z",Term "3",Term "y",Term "2",Term "1"]),
(NTerm "B",fromList [Term "4",Term "3",Eps])]

4



Follow Sets

The follow set of a non-terminal symbolN tells us the terminal symbols that could come after a valid parse ofN .
These are used in the LR parsing algorithm to determine when it is allowable to perform the reduce action. You
can think of it as data we need to answer the question“am I done with this symbol?”

Supposewehave a productionN → αMβ, whereN andM are non-terminal symbols, andα andβ are arbitrary
strings of symbols. There are three rules.

• If ε 6∈ first(β), then follow(M) ⊂ first(β)− ε, since β followsM . (We never add ε to a follow set.)

• If ε ∈ first(β), then follow(M) ⊂ follow(N), sinceM appears at the end of anN production.

• Finally, for the start symbol S and end of input symbol $, we have $ ∈ follow(S).

So, for the grammar ruleA→ 1 C B, we have follow(C) = first(B) ∪ follow(A), since ε ∈ first(B).
As in first sets, we iteratively update our follow set according to these rules.
The first time we apply these rules to our grammar gr, we get

follow(S) = {$}
follow(A) = {x}
follow(B) = {x, y}
follow(C) = {3, 4, x, y}

It just so happens that this is the complete follow set for this grammar.
Here is the code to perform an update.

updateFollow :: GSet -> GSet -> Prod -> GSet
updateFollow fiset foset (Prod nt []) = foset
updateFollow fiset foset (Prod nt (NTerm n : syms)) =

let fs_n = first syms fiset
rest = updateFollow fiset foset (Prod nt syms)

in if S.member Eps fs_n
then updateDefault

(\fs -> fs `S.union` H.lookupDefault S.empty nt foset
`S.union` (S.delete Eps fs_n))

S.empty
(NTerm n)
rest

else updateDefault
(S.union (S.delete Eps fs_n))
S.empty
(NTerm n)
rest

updateFollow fiset foset (Prod nt (_ : syms)) =
updateFollow fiset foset (Prod nt syms)

It works by walking down the right hand side of a production and considering each element. The last clause
handles the case that the symbol is a terminal or ε; it just considers the rest of the elements. The second clause
handles the case that the symbol is a non-terminal. In this casewe take the first set of the remaining string and union
that with the non-terminal’s follow set, also adding the production’s follow set if there is an ε. We then check the
rest of the symbols (this is the purpose of rest). We can use the fix-point operator with this to define followSet.

5



Source Code

Here is the complete source code.

{-# LANGUAGE DeriveGeneric #-}

module Main where
import qualified Data.HashMap.Strict as H
import qualified Data.HashSet as S

import GHC.Generics (Generic)
import Data.Hashable

-- Add these next three lines if you are using stack
import Lib
main :: IO ()
main = someFunc

-- The Types

data Symbol = Term String
| NTerm String
| Eps

deriving (Show,Eq,Generic)

instance Hashable Symbol

data Prod = Prod Symbol [Symbol]
deriving (Show,Eq)

type GSet = H.HashMap Symbol (S.HashSet Symbol)

updateDefault :: (Eq k, Hashable k) => (v -> v) -> v -> k -> H.HashMap k v -> H.HashMap k v
updateDefault f d k m =

case H.lookup k m of
Nothing -> H.insert k (f d) m
Just v2 -> H.insert k (f v2) m

gr = [Prod (NTerm "S") [NTerm "A", Term "x"]
,Prod (NTerm "S") [NTerm "B", Term "y"]
,Prod (NTerm "S") [Term "z"]
,Prod (NTerm "A") [Term "1", NTerm "C", NTerm "B"]
,Prod (NTerm "A") [Term "2", NTerm "B"]
,Prod (NTerm "B") [Term "3", NTerm "B"]
,Prod (NTerm "B") [NTerm "C"]
,Prod (NTerm "C") [Term "4"]
,Prod (NTerm "C") [Eps]
]

first :: [Symbol] -> GSet -> S.HashSet Symbol

6



first [] fset = S.singleton Eps
first (Term t : _) fset = S.singleton $ Term t
first (Eps : syms) fset = first syms fset
first (NTerm t : syms) fset =

let fs_t = H.lookupDefault S.empty (NTerm t) fset
in if S.member Eps fs_t

then S.union (S.delete Eps fs_t) $ first syms fset
else fs_t

updateFirst :: GSet -> Prod -> GSet
updateFirst fset (Prod nt syms) =

updateDefault (S.union (first syms fset)) S.empty nt fset

propagateFirst grm fset = Prelude.foldl updateFirst fset grm

fix f x = if x == result
then x

else fix f result
where result = f x

firstSet grm = fix (propagateFirst grm) H.empty

follow sym foset = H.lookupDefault S.empty sym foset

updateFollow :: GSet -> GSet -> Prod -> GSet
updateFollow fiset foset (Prod nt []) = foset
updateFollow fiset foset (Prod nt (NTerm n : syms)) =

let fs_n = first syms fiset
rest = updateFollow fiset foset (Prod nt syms)

in if S.member Eps fs_n
then updateDefault

(\fs -> fs `S.union` H.lookupDefault S.empty nt foset
`S.union` (S.delete Eps fs_n))

S.empty
(NTerm n)
rest

else updateDefault
(S.union (S.delete Eps fs_n))
S.empty
(NTerm n)
rest

updateFollow fiset foset (Prod nt (_ : syms)) =
updateFollow fiset foset (Prod nt syms)

propagateFollow fiset grm foset =
Prelude.foldl (updateFollow fiset) foset grm

followSet grm = fix (propagateFollow (firstSet grm) grm) H.empty

7


