CS 421 --- Interpreter Activity 2

Manager | Keeps team on track

Recorder | Records decisions / QC

Reporter | Reports to class

Reflector | Assesses team performance

(Hand in one copy per team. Do NOT mangle or staple the corners; it will jam the scanner!)
Here is part of the code for the i4.hs interpreter.

odata Val = IntVal Integer
1 deriving (Show,Eq)
2

sdata Exp = IntExp Integer

4 | IntOpExp String Exp Exp
5 | VarExp String
6 | LetExp String Val Exp

7 deriving (Show,Eq)

o type Env = [(String,Val)]

10

11intOps = [("+",(+))

12 , (21 0))
("= ())
("/",div)]

13 ,
14 ,
15

16 1iftIntOp f (Intval i1) (Intval i2)
17 1iftIntOp f _

18

Intval (f i1 i2)
Intval 0

1weval :: Exp -> Env -> Val
20eval (IntExp i) _ = Intval i
21

22 eval (IntOpExp op el e2) env =
23 let vl = eval el env

24 v2 = eval e2 env

25 Just f = lookup op intOps
26 in 1iftIntOp f v1 v2

27

2s eval (VarExp v) env =

20 case lookup v env of

30 Just v -> v

31 Nothing -> Intval 0

32

sseval (LetExp var el e2) env =
34 let vl = eval el env

35 in eval e2 (var,v1):env

Problem 1) Code review this. Three lines have errors, and they are different ones than from last time! Find them and
correct them.

Problem 2) Consider the following code:

o Prelude> delta = 1

1 Prelude> inc x = x + delta

2 Prelude> inc 10

311

4Prelude> messup x = let delta = 2 in delta + inc x
5 Prelude> messup 10

6 —— What happens?

Have each member of the team predict the output of messup 16. Come to a consensus about the output and why.

Adding functions to the Interpreter

Consider the following code that would add functions to the language. For the data types we are only showing the
added clauses to save space.

odata Val = FunVal String Exp
1

adata Exp = FunExp String Exp
3 | FunApp Exp Exp

4

s eval (FunExp var body) env = FunVal var body
6 eval (FunApp el e2) env =

7 let FunVal var body = eval el env

8 arg = eval e2 env

9 in eval body ((var,arg):env)

10

11 example = eval (FunExp "x" (IntOpExp "+" (VarExp "x") (VarExp "delta"))) [("delta",IntvVal 1)]

Problem 3) The constructor for Funval takes an Exp for the body, not a val. Why do we not evaluate the body of the
function when we create the Funval?

Problem 4) What does the syntax ((var,arg):env) indicate?

Problem 5) Here is a reasonably equivalent program to the Haskell one above.

o Prelude> eval (LetExp "delta" (IntExp 1)

1 (LetExp "inc" (FunVal "x" (IntOpExp "+" (VarExp "x") (VarExp "delta")))

2 (LetExp "messup" (FunVal "x" (LetExp "delta" (IntExp 2)

3 (IntOpExp "+" (VarExp "delta") (FunApp (VarExp "inc") (VarExp "x")))))
4 (FunApp (VarExp "messup") (IntExp 10)))))

5 L1

Does it give the same result as the Haskell program? Hint: the answer is * *no." What goes wrong?

Closures

Problem 6) The instructor will talk briefly about Closures, which fix this problem. Modify the given code to implement
closures.

Interpreter Activity 2--- Reflector’s Report

Manager | Keeps team on track
Recorder | Records decisions

Reporter | Reports to Class

Reflector | Assesses team performance

1. What was a strength of your team's performance for this activity?

2. What could you do next time to increase your team's performance?

3. What insights did you have about the activity or your team's interaction today?

Interpreter Activity 2 --- Team's Assessment (SII)

Manager or Reflector: Consider the objectives of this activity and your team's experience with it, and then answer
the following questions after consulting with your team.

1. What was a strength of this activity? List one aspect that helped it achieve its purpose.

2. What is one things we could do to improve this activity to make it more effective?

3. What insights did you have about the activity, either the content or at the meta level?

